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Combined feedforward and feedback (hybrid) controller design has recently
been shown to be an e�ective approach for acoustic and structural vibration
control. This paper extends previous analysis of this architecture to investigate
the strong coupling that typically exists between the feedforward and feedback
components for a system having noise on the feedforward sensor. One shows
with a simple structural isolation example that the optimal hybrid H2 controller
o�ers the bene®t of simultaneous improvement in vibration performance along
with a reduction in closed loop control bandwidth.
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1. INTRODUCTION

Of recent interest in the ®eld of vibration control and suppression is the design
of control systems that use both feedforward and feedback sensors [1±3]. Within
this architecture, the feedback sensor provides some measure of the system
response, and the feedforward sensor provides a measure of the disturbance. A
controller designed to utilize a combination of feedforward and feedback sensors
has been called a hybrid controller [4].
In this paper one looks speci®cally at hybrid control designs that optimize an
H2 performance objective. The problem of interest is to determine the degree of
coupling that exists between the feedforward and feedback controllers within this
architecture. Reference [4] considered a similar problem for the special case with
no noise on the feedforward sensor. The results in reference [4] show that the
feedforward and feedback design problems are separable, i.e., the feedback
controller can be designed independently of the feedforward controller. These
results are extended here to the more general case of sensor noise on the
feedforward sensor, for which the feedforward and feedback control design
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problems are explicitly shown to be coupled. In addition, it is demonstrated that
the feedforward sensor offers design freedom that can be exploited to improve
the H2 performance while simultaneously reducing the loop bandwidth. This
reduction in the loop bandwidth can provide an increase in stability robustness
for uncertain high frequency dynamics, which is a key issue for active structural
(acoustic) controllers [3, 5±7]. This paper provides a thorough investigation of
this coupling in the realistic case of non-zero noise on a feedforward sensor,
which is a key step for general hybrid H2 controllers. Note that one of the
advantages of designing the combined controllers within an optimization
framework such as H2 or H1, is that parametric robustness can also be included
in the control designs [8±10]. Also, using the H2 frequency weighted cost
functionals in references [11±13], the feedforward component of the controllers
can be designed to cancel harmonic disturbances. Thus, a full understanding of
the synergistic coupling that exists in the realistic case of non-zero noise on a
feedforward sensor is extremely important for hybrid design, and it is toward
this end that this paper provides a thorough investigation.
The paper is organized as follows. Section 2 presents the H2 controller speci®c

to the two sensor con®guration, using a development that parallels that
described in reference [4]. This more general development is included in detail for
completeness and also for the purpose of deriving the analytic form of the two-
input hybrid controller for a simple scalar system. This particular controller is
then used in section 3 to illustrate the design freedom offered by the two sensor
approach. This analysis is done in the form of various trade-offs between system
parameters such as H2 performance and control bandwidth versus the noise
parameters of the sensors. Section 4 presents a more realistic example to evaluate
the trends in a system with sensor dynamics.

2. H2 OPTIMAL SOLUTION: THE TWO RICCATI EQUATIONS

In this section it is shown how a system with a combination of feedforward
and feedback sensors can be cast into the LQG framework. The standard set-up
for this problem is shown in Figure 1. The measurement y(t) is comprised of two
parts, ym1 and ym2, given by the feedback and feedforward sensors, respectively.
These sensors have white noise, Z1(t) and Z2(t) with spectral density matrices Vms

and Vp, respectively. Using the notation of reference [4], the system is acted upon
with two disturbances, a random white noise wr(t), and a measurable white noise
wm(t). For simplicity in the presentation, one assumes that all white noises are
zero mean and mutually uncorrelated. Assuming a state space representation for
the linear system, G:u! yp is given by

G�s� :�s A Bu

Cyp Dyu

� �
, �1�

the system dynamics shown in Figure 1 can be written as
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_x � Ax� Buu� �Br Bm 0 0�
wr

wm

Z1
Z2

2664
3775 � Ax� Buu� Bww: �2�

The measurement y(t)= [yTm1 yTm2]
T can then be expressed as

y � Cyp

0

� �
x� 0 0 Dp 0

0 I 0 Dms

� � wr

wm

Z1
Z2

2664
3775 � Cyx�Dyww, �3�

where unity weighting has been assumed on the disturbance vector wm. The
performance variable of interest is de®ned to be the output z(t), with

z � Czx�Dzuu: �4�
The objective is to control z(t) using the control signal u(t) in the presence of all
disturbances w(t). With these de®nitions one then has completely de®ned a state
space realization for the standard two-port system [14, p. 87] �G(s),

�G � Gzw Gzu

Gyw Gyu

� �
, �5�

shown in Figure 2.
The optimal H2 solution to this problem requires the minimization of the

functional (see for example reference [15, pp. 278±280]),

JLQG � lim
t!1E�zT�t�z�t�� �4 kzk2RMS: �6�

As is well known, when only the output y(t) is available, the optimal controller is
linear and requires the solution of a pair of Riccati equations corresponding to
the linear quadratic estimation (LQE) and regulation (LQR) problems. In terms
of the given state space representation for �G(s), the LQR and LQE Riccati
equations are

Dms

Bmwm(t)

2(t)

1(t)

wr(t)

u(t)

y(t)
ym1(t)

ym2(t)

Br

Dp

G(s)

Figure 1. Hybrid control set-up.
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0 � �Aÿ BuR
ÿ1
2 RT

12�TP� P�Aÿ BuR
ÿ1
2 RT

12� ÿ PBuR
ÿ1
2 BT

u P� R1 ÿ R12R
ÿ1
2 RT

12

�7�
and

0 � �Aÿ V12V
ÿ1
2 Cy�Q�Q�Aÿ V12V

ÿ1
2 Cy�T ÿQCT

yV
ÿ1
2 CyQ� V1 ÿ V12V

ÿ1
2 VT

12,

�8�
where

R1 � CT
z Cz, R12 � CT

z Dzw � 0, R2 � DT
zuDzu,

V1 � BwB
T
w, V12 � BwD

T
yw, V2 � DywD

T
yw:

The state space solution of the controller (11) is straightforward given the
solution P and Q of the Riccati equations (7, 8). The controller matrices are

Ac � A� BuCc ÿ BcCy, Bc � �QCT
y � V12�Vÿ12 , Cc � ÿRÿ12 �BT

u P� RT
12�:
�9±11�

Note that these expressions assume no coupling between the state and control
components of the performance (R12=0), and that the resulting controller is
strictly proper, i.e., Dc=0.

2.1. THE HYBRID H2 CONTROLLER

The following provides an analysis of the behavior of the hybrid controller
developed in the previous section. One ®rst identi®es the impact of the sensor
parameters on the solution of the LQE Riccati equation (8). By de®nition,

V1 � BrB
T
r � BmB

T
m � Vr � Vm, V12 � �0 B�, �12�

V2 �
DpD

T
p 0

0 I�DmsD
T
ms

" #
� Vp 0

0 I� Vms

� �
: �13�

Then, similarly to reference [4], one has that

V12V
ÿ1
2 C � �0 Bm�

Vÿ1p 0

0 �I� Vms�ÿ1

" #
Cy

0

� �
� 0,

G(s)

w(t)

u(t)

z(t)

y(t)

Figure 2. Standard two-part H2 control system, �G.
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and

V12V
ÿ1
2 VT

12 � Bm�I� Vms�ÿ1BT
m: �14�

With the above substitutions into equation (8),

0 � AQ�QAÿQCT
y V
ÿ1
p CyQ� Vr � Vm ÿ Bm�I� Vms�ÿ1BT

m

� AQ�QAÿQCT
y V
ÿ1
p CyQ� Ve, �15�

where the effective process noise for the system Ve is

Ve � Vr � Vm ÿ Bm�I� Vms�ÿ1BT
m � Vr � Bm�Vms�I� Vms�ÿ1�BT

m: �16�
In this expression, V1=Vr+Vm corresponds to the amount of process noise
acting on the system. However, equation (16) shows that this amount is
effectively reduced when the feedforward sensor is used. Of course, the effective
reduction is a function of the relative ``quality'' of the feedforward measurement,
given by Vms. Reference [4] considers the case with Vms=0 (a perfect
feedforward sensor) which yields the maximal reduction in Ve and separability of
the controllers. Stronger coupling exists between the two designs for systems that
have feedforward sensor noise, and the following sections provide further
insights on the degree of coupling that exists.

2.2. SPECIAL CASE: SCALAR SYSTEM

In order to further understand the effect of the feedforward on the resulting
controller, a simple scalar system with scalar inputs and outputs is considered.
The system dynamics are described by

_x � ax� buu� bww � ax� u� �0 bm 0 0�
wr

wm

Z1
Z2

2664
3775: �17�

The measurement is

y � Cyx�Dyww � 1

0

� �
x� 0 0 dp 0

0 1 0 dms

� � wr

wm

Z1
Z2

2664
3775, �18�

and the scalar performance is given by

z � czx� bzuu: �19�
It is easily shown then that the LQR Riccati equation (7) for this system reduces
to

0 � 2apÿ p2=r2 � r1, �20�
for which the optimal solution is
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po � ar2 �
����������������������
a2r22 � r1r2

q
, �21�

where r1= c2z and r2= b2zu. Similarly, the optimal LQE equation (8) reduces to

0 � 2aqÿ q2=vp � ve, �22�

where

ve � vr � vmvms=�1� vms�: �23�

and the optimal LQE solution is given as

qo � avp �
����������������������
a2v2p � vpve

q
: �24�

With these exact Riccati solutions the explicit formula for two-input controller
is obtained by simplifying equation (11):

K�s� � ÿ�a�
���������������������
a2 � r1=r2

p
�

s� a�
���������������������
a2 � r1=r2

p
� ���������������������

a2 � ve=vp
p a�

���������������������
a2 � ve=vp

q ���� bm
1� vms

� �
� �Kfb�s� j Kff�s��: �25�

For this simple problem, equation (25) explicitly shows the role of the
feedforward sensor noise in the optimal blending of the feedforward and
feedback controllers, and in the modi®cations to the feedback controller
bandwidth and low frequency gain. Several special cases are of interest.

1. Note that a noisier measurement of the disturbance corresponds to an
increase in the vms. Equation (25) indicates that in this case, the feedforward
component Kff is effectively shut off because the coef®cient bm/(1+ vms) is
inversely proportional to vms. Furthermore, the effective process noise Ve 1V1,
and, as expected, the controller reduces to the standard H2 feedback design.
2. Another interesting case occurs for an ideal feedforward sensor, i.e.,

vms! 0. In this case ve! vr, and thus the noise intensity associated with the
measured disturbance is reduced. The measured disturbance can then be treated
as a deterministic signal and incorporated into the feedback controller with full
gain bm. As vms! 0, Kfb becomes the standard H2 controller, designed with
process noise intensity vr< v1 [4].

These two extreme cases illustrate a key trend in the combined design, namely
that the optimal feedforward and feedback controllers both depend on the
feedforward sensor sensor noise. For example, reducing vms also reduces the
effective process noise ve. This change results in a lower feedback loop gain, a
slower controller pole, and an increased use of the feedforward sensor. The next
section discusses the impact of these changes to the two controllers on the
disturbance rejection performance of the closed-loop system.
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3. NUMERICAL ANALYSIS

The scalar system in the previous section can be used to investigate the control
architecture design trade-offs in the design of hybrid H2 controllers. Speci®cally
the effects of the feedback and feedforward sensor noise on the closed loop
bandwidth and H2 performance are considered. The optimal H2 cost for a
system can be written as

JLQG � TrfPVe �QKT
LQRR2KLQRg, �26�

where the LQR feedback gain matrix KLQR=ÿRÿ12 BT
u . For the scalar system

this reduces to

JLQC � pove � qop
2
o=r2: �27�

For simplicity, the highest loop crossover frequency,

wc � fo j jGyu�jo�Kfb�jo�j � 1g,
is used as the criterion for evaluating system bandwidth. In terms of the system
parameters the crossover frequency is

2o2
c � ÿ�a2 � b2� �

������������������������������������������������������������������������������������
�a2 � b2� � 4f�a2 � l21�2�a2 � l22�2 ÿ a2b2g

q
, �28�

where l1=
���������������������
a2 � r1=r2

p
, l2=

���������������������
a2 � ve=vp

p
and b= a+ l1+ l2. Note that only the

feedback controller in¯uences the crossover frequency, but the compensator gain
is changed when one introduces the feedforward sensor. The impact of the
feedforward sensor is seen explicitly in equation (28) since Vms will change Ve.

3.1. COST AND BANDWIDTH VERSUS SENSOR NOISE INTENSITY

For this trade study the parameters of the scalar system will be ®xed simply as
a=1, bw= bzu= cz=1 and the LQG weights as r1=1, r2=1, vm=10, vr=1,
and the effects of varying feedforward and feedback sensor noise on the
performance cost and loop bandwidth are examined, as de®ned above. These
effects are shown in Figures 3 and 4.
In Figure 3, the performance and control bandwidths are graphed as a

function of feedback sensor noise intensity for various levels of feedforward
sensor noise. As expected, the performance degrades as the feedback sensor
noise increases. The nearly linear behavior with vp is consistent with the linear
dependence of the cost (27) on the Riccati solution (24). The crossover frequency
decreases with increasing feedback sensor noise, which corresponds to a decrease
in controller authority and in essence, less reliance by the controller on the
feedback information. These trends are common in any control design process.
However, Figure 3 can also be used to analyze the impact of the feedforward
sensor as well. In particular, Figure 3 shows that, while the bandwidth decreases
for increasing feedback sensor noise vp, the bandwidth curves increase for
increasing levels of feedforward sensor noise vms. Thus as vms increases, there is
less reliance on the feedforward component in the optimal design resulting in a
higher bandwidth feedback design. Conversely, as the noise on the feedforward
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sensor is reduced one sees a marked reduction in the feedback controller
bandwidth.
Figure 4 also shows the impact of the relative noise levels of the feedback and

feedforward sensors on the resulting bandwidth (as measured by the loop
crossover) and the system H2 performance. For a ®xed feedforward sensor noise
intensity V1m, the performance of the system should improve with higher quality
feedback signal ym. This improvement is seen in the ®gure with the H2
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Figure 3. Performance and bandwidth trends as a function of feedback sensor noise intensity.
(a) H2 performance; (b) Wc as a function of Vp. (Ð, Vms=0�1; ± �±, Vms=1�0; - - -, Vms=10.)
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Figure 4. Comparison of the impact of reducing the noise of the feedback and feedforward
sensors on the H2 performance and loop bandwidth. Solid lines show the trend as Vp decreases
for various levels of Vms: &, Vms=10; *, Vms=1; }, Vms=0�1. Dashed lines show the effect of
hybrid con®guration with arrows indicating the trend as feedforward sensor noise decreases.
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performance decreasing from 140 to 50 as the intensity of the feedback sensor
noise (Vp) decreases from 0�1 to 0�001, when the feedforward noise intensity is
®xed at Vms=10. As expected, this improvement in feedback sensor quality
results in a bandwidth increase from 4 to 47 rad/s. Note that, as illustrated in the
®gure, the ultimate levels of performance that can be achieved with this
con®guration are limited.
The ®gure also shows a key bene®t of the hybrid H2 design in that it allows

for simultaneous performance improvement and bandwidth reduction. The
dashed lines in the ®gure show the effect of decreasing the feedforward signal
noise Vms for a ®xed level of feedback sensor noise Vp. These dashed curves
show that the H2 performance can be improved while simultaneously reducing
the feedback control bandwidth, which is one of the key bene®ts of optimally
blending the feedforward and feedback controllers. A typical trace indicates that
a bandwidth reduction from 15 to 6 rad/s, a decrease of nearly 66%, is
associated with a performance improvement from 55 to 5 as the feedforward
noise, Vms decreases from 10 to 0�1 and the feedback sensor noise intensity is
kept constant at Vp=0�03.
This simple example illustrates the degree of coupling that occurs in the two

control design problems. In particular, it shows how the feedback design is
modi®ed in the presence of a noisy feedforward sensor, and how optimal design
blends in the feedforward component of the control to achieve improved
performance. The key bene®t of the combined design is that the bandwidth of
the feedback component is reduced, thereby potentially providing improved
stability robustness to high frequency unmodelled dynamics in the system. This
additional design freedom is explored with a typical vibration isolation example
in the next section.

4. EXAMPLE: ISOLATION SYSTEM WITH SENSOR DYNAMICS

This analysis can also be applied to the typical engineering problem of actively
isolating a payload from the vibrations of a moving platform (see reference [16],
for example). In this case active controller design ®ts into the hybrid control
architecture when both the platform and the isolation mass are equipped with
displacement sensors that have signi®cant dynamics. This isolation system is
considered in this section to further illustrate the advantages of the hybrid
approach. In particular, the design approach offers the bene®t of improved
isolation performance using reduced feedback loop gain as compared to an
equivalent LQG control augmented with a feedforward scheme that uses a
rudimentary inversion of the feedforward sensor dynamics. The results that
follow are presented in the same trade study manner as the preceding analysis,
that is both H2 performance and bandwidth will be shown as functions of
relative feedforward signal quality. This format clearly shows the synergistic
trade-off that occurs between the feedforward and feedback controllers for the
optimal isolation design.
The simple two sensor system is shown in Figure 5. The objective is to isolate

the top mass M from the force disturbance due to ground motion w using the
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control force u. The ground motion couples to the mass through the mount
which is modelled with a spring stiffness k and damping c. For this example
the suspension parameters were chosen as M=1�0 kg, k=30 N/m and c=0�1
N/m/s, which results in a lightly damped mode at on=5�48 rad/s.
Measurements of the top mass and the ground disturbance are provided by

the two sensors, S1 and S2, respectively. The sensors considered are displacement
seismometers that provide a measure of the displacement above the frequencies
of the sensor internal resonance, which was chosen to be 1�0 rad/s (Figure 6).
The sensors were therefore each modelled as a simple second order system, with
both having a natural frequency at 1�0 rad/s, with S1 and S2 having 5 and 10%
damping ratios, respectively. The hybrid controllers designed using the
formulation given in section 2 are sixth order. In this study, the intensity of the
feedback sensor S1 was ®xed at Vp=0�05, and the performance of the closed-
loop system was evaluated for varying levels of feedforward sensor noise, Vms.

����
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S2

k c

z

w

u

Mass to be isolated

Feedback sensor

Feedforward sensor

Moving platform

Figure 5. Isolation system schematic.
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Figure 6. Frequency response of the displacement sensor dynamics: (a) amplitude response,
and (b) phase response, as a function of frequency.
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As a means of evaluation, the hybrid H2 controllers will be compared to a
controller designed using a standard LQG feedback controller augmented with a
manual feedforward compensator. This feedforward controller was designed by
providing a stable, band-limited inversion of the feedforward sensor dynamics
and injecting the signal into the closed-loop as a force command to complement
the feedback control. This corresponds to a very effective engineering approach
to the feedforward control that is commonly used in practice [17]. The
magnitude of this feedback controller is plotted in Figure 7(a), and the manual
feedforward transfer function is given in Figure 7(b). Also shown in the ®gure
are the feedforward and feedback hybrid control magnitudes designed for
various levels of Vms. The trends uncovered in the previous section are clearly
evident here. In particular, as the feedforward sensor noise is reduced, the
feedback control magnitude decreases, particularly at high frequency, where the
peak gain is nearly 80 when vms=8�73, down to 1�8 when the noise reduces to
vms=0�005. Again, one also sees that as the feedforward noise levels increase the
feedforward is, in essence, shut off, and the control reverts to the single sensor
LQG design. This effect is seen in the ®gure by noting that the hybrid feedback
control magnitude nearly traces over the single sensor feedback signal in Figure
7(a), while in Figure 7(b) the corresponding feedforward magnitude is reduced to
a level near 2�0, when vms=8�73. The control plots, in a sense, justify the use of
the manual feedforward. When the feedforward measurement is relatively noise-
free, the hybrid feedforward control tends to invert the sensor dynamics in the
same way in an effort to recover the sensor gain loss at low frequency, and to
notch out the sensor peak at 1�0 rad/s.
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Figure 7. Feedback and feedforward transfer functions for various levels of Vms: (a) feedback
magnitude; |Kfb(jo)|; and (b) feedforward magnitude; |Kff(jo)|. Solid lines: in (a) LQG feedback, in
(b) manual feedforward design. Hybrid designs: ± �±, Vms=0�005; � � �, Vms=0�066; - - -, Vms=8�73.
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Figures 7(a) and 7(b) explicitly show the coupling discussed in section 2 that
results in lower feedback gains, reduced bandwidth controllers, and increased use
of the feedforward control as vms is reduced.
In Figure 8(a), the magnitudes of the closed loop response to disturbances,

Gzw, are plotted. As expected, the hybrid controllers outperform the single sensor
design when the feedforward signal has low noise, but this advantage diminishes
as the quality of the feedforward measurement decreases. This is seen in two
ways. First, the magnitude plots for the hybrid design and the single sensor
design tend to merge as vms increases. For a value of vms=8�73 the graph of Gzw

overlays the single sensor performance plot. Second, the H2 cost of the hybrid
design asymptotes to the single sensor LQG level of 4�7 for high values of vms, as
illustrated in Figure 8(b). It is interesting to note that the performance of the
LQG design with the feedforward loop inserted actually outperforms the hybrid
design when the noise levels of the feedforward sensor are above vms=1�0.
A secondary bene®t to be gained with a hybrid design is in the possible

reduction in loop gain. As before, one uses the crossover frequency of the loop
transfer function, KfbGyu to quantify this bene®t. The bandwidth ob is de®ned as

ob � minfo0 j jKfbGyu�jo�j < 0�707, 8oeo0g:
This performance measure clearly has important implications for the stability
robustness of the system that can be expected in the presence of unmodelled high
frequency dynamics. In particular, reducing ob could mean that the system is
much less susceptible to a destabilizing interaction with the uncertain modes of
the system at high frequency. In Figure 9(a), the magnitudes of the loop transfer
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Figure 8. (a) Performance magnitude, |Gzw| as function of frequency; Ð, LQG feedback only;
± �±, LQC with manual feedforward; � � �, hybrid (Vms=0�066); - - -, hybrid (Vms=8�73). (b) H2

cost versus sensor noise Vms; Ð, hybrid designs; - - -, LQG only level; ± �±, LQG with manual
feedforward.



VIBRATION ISOLATION 37

functions are graphed for various levels of Vms. As shown, the overall gain
decreases as the feedforward sensor noise decreases. The peak gains reduce from
a value of 43 for Vms> 10 to less than unity for Vms< 0�004, as indicated in
Figure 9(b). Again, consistent with the analysis given for the scalar system, the
highest levels of loop gain and ob are given for the single sensor LQG design,
and effective reduction of these numbers can be achieved using the hybrid design
with improving feedforward signal quality. For the example considered, ob is
reduced from LQG loop bandwidth of 10�1 rad/s to 6�2 by using a feedforward
sensor with Vms=0�01, as shown in Figure 9(c).
The isolation design for this system clearly demonstrates the key bene®t of the

hybrid architecture of simultaneous H2 performance improvement and reduced
control bandwidth. Here, the inclusion of the feedforward sensor into the design
allows a bandwidth reduction from 10�1 to 6�2 rad/s while giving a factor of 3
improvement in H2 performance.

5. CONCLUSIONS

This paper extends previous analyses of H2 optimal hybrid controllers that use
both feedforward and feedback sensors. Prior results have demonstrated that the
two control design problems (feedforward and feedback) are separable for the
special case of a noise-free feedforward sensor. This paper shows that stronger
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Figure 9. (a) Loop transfer function, |KfbGyu|, as function of frequency; Ð, hybrid Vms=0�005;
� � �, hybrid Vms=0�066; ± �±, hybrid Vms=8�73; - - -, LQG only design. (b) Peak loop gain versus
sensor noise Vms; Ð, hybrid designs; - - -, LQG only level. (c) Bandwidth ob with Vms; Ð, hybrid
designs; - - -, LQG only level.
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coupling exists between the feedback and feedforward controllers when there is
noise on the feedforward sensor. This coupling is a result of the effective change
in the process noise associated with the measured disturbance that is achieved
when the feedforward sensor noise is modi®ed. The analysis in the paper shows
that reducing the feedforward sensor noise results in a lower feedback loop gain,
a slower controller pole, and an increased use of the feedforward controller.
Several examples are presented to show that the hybrid architecture can be used
to simultaneously design for both improved optimal H2 performance and
reduced closed-loop bandwidth. These examples provide further insight on the
synergistic coupling that exists between the feedback and feedforward control
designs, and the potential advantages of this coupling in terms of improved
robustness to uncertain high frequency dynamics.

6. SUMMARY

The design of controllers using both feedback and feedforward sensors has
been called hybrid control. Within this framework, the feedback sensor is used
primarily for stabilization while the feedforward sensor is used to improve the
disturbance rejection performance of the system. This paper analyzes the
simultaneous design of the feedforward and feedback controllers within this
architecture. Prior results have demonstrated that these two control design
problems (feedforward and feedback) are separable for the special case of a
noise-free feedforward sensor. This separation means that the feedback
controller can be designed independently of the feedforward controller. This
paper extends the analysis to consider the more realistic case with a noisy
feedforward sensor. Including this sensor noise enables a more complete
investigation of the strong coupling that typically exists between the feedforward
and feedback components of the architecture. The results show how the
combined controller can be synergistically used to simultaneously design for
both optimal vibration performance and reduced closed-loop bandwidth.
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